
DIFFERENCES IN ANTIVIRAL ACTIVITIES FOR ISOMERS OF A FLUORINATED CYCLOBUTANE NUCLEOSIDE ANALOG

G. D. Vite,* J. A. Tino, R. Zahler, V. Goodfellow, la A. V. Tuomari, B. McGeever-Rubin, and A. K. Fieldlb Bristol-Myers Squibb Pharmaceutical Research Institute Princeton, New Jersey, U.S.A.

(Received in USA 16 February 1993)

Abstract: Isomeric fluorinated cyclobutane nucleoside analogs (±)-2 and (±)-3 were prepared via multi-step syntheses. Compound 2 is a potent inhibitor of herpes viruses in cell culture assays, while the configurational isomer 3 is devoid of antiviral activity.

Fluorine substitution on the furanose ring of nucleosides has led to the discovery of potent antiviral agents, such as 1-(2'-deoxy-2'-fluoro-1'-β-D-arabinofuranosyl)-5-iodocytosine (FIAC).² Moreover, promising antiviral activity for a number of fluorinated carbocyclic nucleoside analogs has recently been reported.³ These results, along with our interest in cyclobutane nucleoside analogs,⁴ prompted us to study the antiviral effects of fluorine substitution on the cyclobutane ring of (+)-1, a potent inhibitor of herpes simplex virus type 1 (HSV-1) and HSV-2. In particular, we chose to investigate the chemical syntheses and antiviral effects of fluorinated analogs 2 and 3. Herein, we report our results which demonstrate a striking difference in potency for these configurational isomers against a wide range of herpes viruses.

Synthesis of racemic 2 was carried out as outlined in Scheme 1. Reduction of the readily available cyclobutane derivative 4, 4b,c benzylation of the resulting diol and acid hydrolysis of the diethyl ketal afforded cyclobutanone 5. Several methods for the introduction of fluorine adjacent to the carbonyl group of 5 were considered. Many of these methods require the use of hazardous fluorine gas in the preparation of electrophilic fluorinating agents. Attempts to fluorinate 5 (or a silyl ether derivative of 5) with the stable, commercially available N-fluoropyridinium triflate were unsuccessful. However, successful fluorination could be achieved by quenching the kinetic enolate of cyclobutanone 5 with perchloryl fluoride affording a 1:1 mixture of the epimeric α - and β -fluoro ketones 6. Without purification of 6, reduction with LS-selectride gave a 1:1 mixture of cyclobutanols 7 and 8 in 42% yield from 5.7 As expected in nucleophilic additions to cyclic haloketones, the reduction of fluoroketones 6 was stereoselective, since both diastereomers of 6 gave major products corresponding to hydride delivery on the face opposite the fluorine. The diastereomeric alcohols 7 and 8

1212 G. D. VITE et al.

Scheme 1

a) LiAlH₄; b) PhCH₂Br, NaH; c) 1:3 0.5M H₂SO₄/CH₃CN; d) Lithium 2,2,6,6-tetramethylpiperidide, FClO₅;

e) LS-Selectride; 1) p-TsCl, pyridine; g) 2-amino-6-phenylmethoxypurine, K2CO3, 18-Crown-6, DMF, 110°C;

h) Pd(OH)2, cyclohexene, ethanol.

were separated by chromatography, and isomer 8 was converted to tosylate 9. Nucleophilic substitution with 2-amino-6-phenylmethoxypurine, and protecting group removal afforded (±)-2.

Access to the $2^{\circ}\beta$ -fluoro analog (\pm)-3 via the same synthetic approach would require inversion of the C(2) hydroxyl group of 7 followed by introduction of the nucleobase; however, attempts to invert the C(2) hydroxyl group of 7 under Mitsunobu conditions failed. Therefore, a different route to the 2'β-isomer 3 was employed (Scheme 2). Cis-1,2-dimethyl cyclobutene dicarboxylate 10 was prepared in four steps from 1,3,5,7cyclooctatetraene via modification of a known sequence.⁹ Epimerization of 10 with sodium methoxide provided a 58% yield of the trans diester 11. Reduction of 11, followed by benzylation of the resulting diol, afforded cyclobutene 12 in 72% yield. Epoxidation of 12 with m-chloroperoxybenzoic acid gave 13 in 90% yield. Ringopening of epoxide 13 with 2-amino-6-methoxyethoxypurine gave a 55% yield of N(9)-alkylated regioisomers 14 and 15 in a 2:1 ratio, respectively. Use of the methoxyethyl protecting group rather than a benzyl protecting group was advantageous for the chromatographic separation of regioisomers in this reaction; however, this protecting group did not lead to a desired enhancement of N(9) versus N(7) alkylation. 10 Next, the 2-amino group of 14 was protected with a mono-methoxytrityl (mMTr) group, and the 2'α-hydroxy group was converted to the corresponding trifluoromethanesulfonate. Subsequent fluoride displacement with tris(dimethylamino)sulfur (trimethylsilyl)difluoride (TASF) afforded the desired 2'β-fluoro intermediate 16 in 37% yield. ¹¹ Finally, acid hydrolysis of the guanine protecting groups, and boron trichloride removal of the benzyl ethers provided (±)-3 in 62% yield.

The *in vitro* antiviral effects of (\pm) -2 and (\pm) -3 are shown in the Table. The 2' α -fluoro analog (\pm) -2 exhibits potent antiviral effects against a broad spectrum of herpes viruses in viral plaque reduction assays. In these cell culture-based assays, (\pm) -2 is equipotent to acyclovir, the current treatment for HSV-1, HSV-2, and VZV infections. Conversely, the isomeric 2' β -fluoro analog, (\pm) -3, is devoid of antiviral activity. Although fluorine is generally considered to be isosteric with hydrogen, this study provides another example where configurational isomers about a fluoromethylene group result in quite different antiviral properties. In the case of

nucleosides, it is known that **FIAC** is at least 1000 times more active against HSV-1 and HSV-2 than its epimeric 2'α-fluoro isomer.² Likewise, similar trends were recently reported for epimeric, fluorocyclopentane nucleoside analogs.^{3e,g} Our results underscore the strict stereochemical requirements for biological activity that can be encountered when making fluorine atom substitutions on active compounds.

a) Br_2 ; b) O_3 , H_2O_2 , HCO_2H ; c) CH_2N_2 ; d) Zn-Cu; e) NaOMe; f) $LiAlH_4$; g) BnBr, NaH; h) MCPBA; i) 2-amino-6-(2-methoxyethoxy)purine, LiH, DMF, 110°C; j) mMTrCl, Et_3N ; k) $(CF_3SO_2)_2$, pyridine; l) TASF; m) 3M HCl, MeOH; n) BCl_3 .

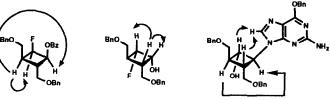
Table

Compd.	IC ₅₀ (μΜ) ^{a,b}			
	HSV-1	HSV-2	VZV	HCMV
(±)-2	0.7-2	0.7	2-4	4-40
(±)-3	>250	>250	>250	>250
(+)-1	0.04-0.08	0.04	0.02-0.08	2
Acyclovir	0.4	0.4	2-4	20-40

a) Viral plaque reduction assay^{4d}; b) Concentration for 50% inhibition of plaque formation.

Acknowledgment: The authors wish to thank Professor N. Andersen (U. Washington) for the NOE studies.

1214 G. D. VITE et al.


References and Notes:

1. Current addresses: (a) Cortech Incorporated, Denver, Colorado; (b) Hybridon Incorporated, Worcester, Massachusetts.

2. Watanabe, K. A.; Su, T.-L.; Klein, R. L.; Chu, C. K.; Matsuda, A.; Chun, M. W.; Lopez, C.; Fox, J. J. J. Med. Chem. 1983, 26, 152-156.

- 3. (a) Biggadike, K.; Borthwick, A. D.; Evans, D.; Exall, A. M.; Kirk, B. E.; Roberts, S. M.; Stephenson, L.; Youds, P.; Slawin, A. M. Z.; Williams, D. J. J. Chem. Soc., Chem. Comm. 1987, 251-254; (b) Biggadike, K.; Borthwick, A. D.; Exall, A. M.; Kirk, B. E.; Roberts, S. M.; Youds, P.; Slawin, A. M. Z.; Williams, D. J. J. Chem. Soc., Chem. Comm. 1987, 255-256; (c) Borthwick, A. D.; Butt, S.; Biggadike, K.; Exall, A. M.; Roberts, S. M.; Youds, P.; Kirk, B. E.; Booth, B. R.; Cameron, J. M.; Cox, S. W.; Marr, R.; Exall, A. M.; Roberts, S. M.; Youds, P.; Kirk, B. E.; Booth, B. R.; Calleron, J. M.; Cox, S. W.; Marr, C. L. P.; Shill, M. D. J. Chem. Soc., Chem. Comm. 1988, 656-658; (d) Biggadike, K.; Borthwick, A. D.; Exall, A. M.; Kirk, B. E.; Ward, R. A. J. Chem. Soc., Chem. Comm. 1988, 898-900; (e) Fletcher, C. A.; Hilpert, H.; Myers, P. L.; Roberts, S. M.; Storer, R. J. Chem. Soc., Chem. Comm. 1989, 1707-1709; (f) Borthwick, A. D.; Evans, D.; Kirk, B. E.; Biggadike, K.; Exall, A. M.; Youds, P.; Roberts, S. M.; Knight, D. J.; Coates, J. A. V. J. Med. Chem. 1990, 33, 179-186; (g) Borthwick, A. D.; Kirk, B. E.; Biggadike, K.; Exall, A. M.; Butt, S.; Roberts, S. M.; Knight, D. J.; Coates, J. A. V.; Ryan, D. M. J. Med. Chem. 1991, 34, 907-914.
- (a) Jacobs. G. A.; Tino, J. A.; Zahler, R. Tetrahedron Lett. 1989, 6955-6958; (b) Slusarchyk, W. A.; Young, M. G.; Bisacchi, G. S.; Hockstein, D. R.; Zahler, R. Tetrahedron Lett. 1989, 6453-6456; (c) Slusarchyk, W. A.; Bisacchi, G. S.; Zahler, R. Eur. Pat. Appl. EP 335355, 1988; (d) Bisacchi, G. S.; Braitman, A.; Cianci, C. W.; Clark, J. M.; Field, A. K.; Hagen, M. E.; Hockstein, D. R.; Malley, M. F.; Mitt, T.; Slusarchyk, W. A.; Sundeen, J. E.; Terry, B.; Tuomari, A. V.; Weaver, E. R.; Young, Zahler, R. J. Med. Chem. 1991, 34, 1415-1421.
- 5. For example: (a) Rozen, S.; Brand, M. Synthesis 1985, 665-668; (b) Purrington, S. T.; Woodard, D. L. J. Org. Chem. 1990, 55, 3423-3424; (c) Barnette, W. A. J. Am. Chem. Soc. 1984, 106, 452-454; d) Umemoto, T.; Kawada, K.; Tomita, K. Tetrahedron Lett. 1986, 4465-4468; (e) Wang, C.-L. J.; Grieco, P. A.; Okuniewicz, F. J. J. Chem. Soc., Chem. Comm. 1976, 468-469.
- 6. This work preceded the recent publications describing the N-fluoroarylsulfonimides. These reagents appear to be superior electrophilic fluorinating agents. See for example: Davis, F. A.; Han, W. Tetrahedron Lett. 1991, 1631-1634; Differding, E.; Ofner, H. Synlett 1991, 187-189.

7. Stereochemical assignments were derived from NOE studies on the following intermediates/derivatives:

- For example: Marcou, A.; Chodkiewicz, W.; Cadiot, P. Bull. Chim. Soc. Fr. 1967, 15, 2429-2431; Wender, P. A.; Holt, D. A.; Sieburth, S. M. J. Am. Chem. Soc. 1983, 105, 3348-3350.
 Cope, A.; Burg, M. J. Am. Chem Soc. 1952, 74, 168-172; Vogel, E. Liebigs Ann. 1958, 615, 14-21.
- Kjellberg, J.; Liljenberg, M.; Johansson, N. G. Tetrahedron Lett. 1986, 877-880; Jones, M. F.; Roberts, S. M. J. Chem. Soc., Perkin Trans. I 1988, 2927-2932.
- 11. Treatment of mMTr-protected 14 with DAST (diethylaminosulfurtrifluoride) failed to give 16.